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Abstract

If the prospective evaluation of all feasible strategies of patient management is not possible or efficient then this poses a
number of questions: i) which clinical decision problems will be worth evaluating through prospective clinical research; ii) if
a clinical decision problem is worth evaluating which of the many competing alternatives should be considered “‘relevant”
and be compared in the evaluation; iii) what is the optimal (technically efficient) scale of this prospective research; iv) what
is an optimal allocation of trial entrants between the competing alternatives; and v) what is the value of this proposed
research? The purpose of this paper is to present a Bayesian decision theoretic approach to the value of information which
can provide answers to each of these questions. An analysis of the value of sample information was combined with dynamic
programming and applied to numerical examples of sequential decision problems. The analysis demonstrates that this
approach can be used to establish: optimal sample size; optimal sample allocation; and the societal payoff to proposed
research. This approach provides a consistent way to identify which of the competing alternatives can be regarded as
“relevant” and should be included in any evaluative study design. Bayesian decision theory can provide a general
methodological framework which can ensure consistency in decision making between service provision, research and
development and the design, conduct and interpretation of clinical research.
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1 Introduction

In many circumstances valid inferences cannot made about the expected costs and benefits of alternative strategies of patient
management simply by observing current clinical practice for two reasons. First, many key parameters, particularly measures
of efficacy, are vunerable to selection bias. Second, some feasible strategies of patient management are not part of current
practice and have simply never been observed. There are potentially a large number of possible strategies in most sequential
clinical decision problems. However the prospective evaluation of all these strategies is unlikely to be regarded as ethical
and certainly not efficient (or even possible) given limited resources for research and development, and a recognition of the
opportunity costs (health benefits forgone) for those enrolled in the trial and for the population of patients awaiting the
results of the research.

In practice many feasible strategies are ruled out as irrelevant during the design of prospective research. However if the
identification of “relevant alternatives” to be included in prospective research is either arbitrary, or uses an implicit decision
rule inconsistent with those that will be applied when the study is complete, then there is a danger that research will revolve
around an arbitrarily selected sub set of strategies. The optimal strategy may have already been ruled out of the analysis as an
“irrelevant alternative”. The evaluation of a particular clinical decision problems should, at least initially, consider all
feasible alternatives rather than focus only on those currently used or those identified as of interest in some arbitrary way.
The “relevant alternatives” which should be compared in prospective research should be identified explicitly and
consistently.

If alternatives cannot be ruled out a priori but the prospective evaluation of all feasible strategies is not possible or efficient
then this poses a number of questions: i) which clinical decision problems will be worth evaluating through prospective
clinical research; ii) if a clinical decision problem is worth evaluating which of the many competing alternatives should be
considered “relevant” and be compared in the evaluation; iii) what is the optimal (technically efficient) scale of this
prospective research; iv) what is an optimal allocation of trial entrants between the competing alternatives; and v) what is the
value of this proposed research? These are questions of how to establish technical efficiency in research design (including
the selection of relevant alternatives as well as optimal scale) and how to achieve allocative efficiency in research and
development.

The purpose of this paper is to present a Bayesian decision theoretic approach to the value of information which can provide
answers to each of these questions. Our aim is to provide a general methodological framework which can ensure consistency
in decision making between service provision, research and devetopment and the design, conduct and interpretation clinical
research.



2 Methodological background

A Bayesian decision theoretic approach to the value of sample information has been available for some time but has only
recently been applied to simple decision problems (two alternatives) in the evaluation of health care technologies (Claxton
and Posnett (1996); Hornberger and Eghtesady (1998); Claxton 1999). This approach is generalised to the analysis of
sequential clinical decision problems which offer a choice between many strategies. Estimates of the expected net benefit of
sample information are used in a dynamic program to establish optimal (efficient) allocation of trial entrants, optimal
(efficient) sample size, technically efficient research design and the expected net benefits of the proposed research.

There is a body of literature which considers the optimal allocation of trial entrants in sequential clinical trials where the
results of the trial accumulate over time and can be used to assign entrants to the different arms (e.g., Armitage (1985)). An
example of this type of approach is Bather’s “play the winner rule” where patients are assigned to the arm of the trial which
appears to be most effective given the accumulated trial results (e.g., Bather (1981); Bather (19835)). This approach and
others addressing the same problem (e.g., Zelen (1969); Hoel et al (1975); and Igiewicz (1983)) do not consider the marginal
cost of sampling and tend to focus on minimising the potential health cost to individuals enrolled in the trial. They are
primarily concerned with individual medical ethics rather than the collective ethical concerns for the costs of acquiring
sample information and the future patients who will benefit from the information generated by the research (e.g., Upton and
Lee (1976)). These approaches are also concerned with sequential clinical trials where the accumulated results from earlier
participants in the trial are available and are used to allocate those entering the trial. Here we addresses a more fundamental
problem of optimal allocation in a fixed sample design where sample information is only available at the end of the trial.
The value of sample information, optimal sample size, and the allocation of patients at each stage (and the identification of
relevant alternatives), must be established before any sample information is available.

The premise of our analysis is that clinical decision rules and research methods should be consistent with the explicit
objective of the health care system. In this case we take an appropriate objective to be: maximise health gain subject to the
budget constraint on service provision. This analysis is also is based on an explicit recognition that information is costly to
acquire both in terms of resources and health outcomes and that the information generated by clinical research is valuable
insofar as it reduces the cost of uncertainty surrounding clinical decisions that can not be deferred. This analysis provides a

technically efficient approach to research design which is based on an explicit consideration of the expected benefits and
costs of acquiring sample information.

The optimal allocation of trial entrants is based on the marginal benefits and marginal costs of allocating a trial entrant to a
particular arm of the trial. This optimal sample allocation also enables ‘‘relevant alternatives” which should be compared in
prospective research to be identified explicitly and consistently. Relevant alternatives can be defined as those where it will
be efficient to allocate some of the sample in a subsequent evaluative trial. When it is not efficient to allocate patients to an
arm of a trial then that alternative can be safely ruled out as irrelevant. It is only by explicitly considering the marginal costs
and benefits of sample information that a consistent and rational definition of what constitute relevant and irrelevant
alternatives in any evaluation is available.

The stylised numerical examples of single, two and four stage decision problems presented below (and detailed in appendix
A) demonstrate that optimal patient allocation increases the value of sample information and can be used to identify and
rule-out irrelevant alternatives which should not be included in an efficient trial design. Indeed if arbitrary fixed allocation
rules are used then the research design will be technically inefficient (the expected net benefits of sampling will be
underestimated and optimal sample size will be biased), there will be a danger that cost-effective research proposals may be
rejected, and any subsequent evaluation may only consider an arbitrarily selected sub set of programs.

3 A single stage decision problem

A simple single stage decision problem which involves a chojce between only two alternative strategies of patient
management is illustrated in figure 1a where treatment t, can be regarded as current practice (in this case no treatment) and t;
is a new treatment, Some (prior) information is available about the path probabilities and the associated costs and utilities of
both treatments, where t, and t, have a prior expected utilities of E(Ult;) and E(Ulty), and prior expected costs of E(Clt;)
and E(Clty) respectively (this prior information is detailed in appendix A). A decision rule which is consistent with the
objective of maximising health gain subject to the budget constraint on service provision would be to maximise net health
benefits, or select t; if the prior incremental net benefit (8;) is positive:

Sury = (B(UM))-g.B(Clt)) - (E(Ulty)-g.B(Cley)) > 0 QY]

where g is the minimum acceptable effectiveness cost ratio for the new treatment and 1/g can be regarded as the acceptable
price per effectiveness unit (e.g., Weinstein and Zeckhauser (1972); Phelps and Mushlin (1991); Claxton and Posnett
(1996); Stinnett and Mullahy (1998)). Clearly whenever a decision is made, or CEA is used to make a statement about what

is cost-effective, a monetary valuation of health outcome is applied.

Figure 1a



The treatment decision based only on existing information (the prior mean incremental net benefit in (1) is uncertain because
the prior incremental net benefit has a prior variance of (c(,z). The expected cost of this uncertainty will be determined by the
probability that a decision based on prior mean net benefit is wrong and the size of the opportunity loss if the wrong decision
is made. Additional information will be valuable insofar as it reduces this expected opportunity Joss.

To decide whether acquiring additional information through prospective research will be efficient it is necessary to establish
the marginal benefits and the marginal cost of sampling, given an optimal (random) allocation of trial entrants between the
two arms of the proposed trial. It is convenient to separate the sample allocation decisions at stage 2 from the selection of
optimal sample size at stage 1 in figure 1a, because it helps the explanation of the dynamic programming approach which is
used to solve the two and four-stage decision problems in section 4.

The value of sample information

The benefit of sample information is the reduction in the cost of uncertainty surrounding the treatment decision. For an
individual patient the expected benefit of a sample of n,) entering stage 2 in figure 1a with n,; allocated to t; and n,;, - n;,
allocated to t; can be expressed as the Expected Value of Sample Information at stage 2 (EV S5 Ine,,n, ) (see Raiffa and
Schiaifer (1959); Schlaifer (1961); Raiffa (1968); Claxton and Posnett (1996); Claxton (1999))

1 r
EVSIpngynn = —.4/ V@), nil .6peLDgineg,n) (2a)

g
where:
L(Dyng),n,) = unit normal loss integral for standardised distance Dy,)lng),ng
Dylngy,ny = (Bor2)-Bb)/ 4/ Vi nes nel o
Ving,nl = 0o (Go)’ + Ony)
S = (E(Ulty)-g.E(Clty)) - (E(Ulty)-g.E(Clty))
&y = point of indifference between t; and t; (8, =0)
O = prior variance of 8y
a2y = (Ou*/ny) + (O (neyny))
6,2 and 0“)2 = variance of the net benefit of t; and t, respectively
2 2
Ou” # Oy

The benefit of sample information is the reduction in sample variance (cn(z)z in Ving),ny in 2a) which reduces the posterior
variance of the difference in net benefit. The EVSI in 2a represents the benefit of sample information to an individual patient
but this information is non rival and can be used to inform the treatment decisions for the population of current and future

patients:
EVSI| n n ET: (It - n(2))
R (X5}

where the incidence of new patients entering the decision problem (I) at time t is discounted at rate r over the effective
lifetime (T) of the new technology. The population of current and future patients is also the population from which the
sample will be drawn. In this sense patients entering the trial (n,) are “used up” and will not benefit from the information
generated by the research ;.

(2b)

The marginal cost of additional sample information will include the additional treatment cost compared to current practice
plus any marginal reporting costs (C,). The cost of a sample (Cs) of n, at stage 2 with n,; allocated to t, and ngy-n,;
allocated to t, is given by:

CspyInggy,ny = (E(Clt;) -E(Clty)).ny + Cngy (2¢)

where (E(Clt;) -E(Clty)) is the additional cost of the new treatment. The additional treatment cost for those allocated to t; are
zero since trial entrants would have incurred the costs of current practice anyway ;. The difference between the expected
benefit of sample information (2b) and the cost of the sample (2c) is the Expected Net Benefit of Sample Information and
represents the societal payoff from proposed research:

ENBSQ)IHQ),“H = EVSIQ)an),nn - CS(Q)‘“(Z),HH (2d)

Optimal allocation of trial entrants

The payoff at stage 2 of a sample of ng;) with n; allocated to t; (I1;p)In(),n;;) is the expected net benefit of sample

information:

H(z)ln(z),n“ = ENBS(Z)ln(z), Ny (26)
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In order to establish the optimal allocation of trial entrants an estimate of the payoff at stage 2 for every feasible allocation
of ng tot; and t is required. The optimal allocation of each sample size considered (ng) = 1, .....,500) to t; (n,") will be
where the marginal net benefit of allocating an entrant to t, is equal to t;, or where ENBS(y)In;), n,; reaches a maximum for
each n,). This optimal contingent allocation is illustrated in table 1 where the sample sizes considered are represented by
each row, the feasible allocation to t; are represented by the columns and the payoffs (Iiln(,),n,;) are in the body of the
table. The optimal allocation of each sample is then the row maximum. The optimal contingent allocations (n,;") and
associated payoffs (H(z)lna),nnt) are reported in the far right columns,

The optimal allocation of trial entrants is also illustrated in figure 1b. In this example a greater proportion of the trial
entrants are allocated to t, than with an equal allocation rule (represented by the rising diagonal) because the marginal costs
of assigning an entrant to t, is higher than t, where the additional treatment costs are zero. This difference in marginal
sampling cost offsets the higher marginal benefits of assigning entrants to t; (G, > 6,2 when 1/g<£20,000) 3. The
proportion of the sample allocated to t; also falls as total sample size increases because the marginal benefits of sampling fall
with increased sample size but the differences in the marginal cost of sampling are constant.

Optimal allocation is also dependent on the monetary valuation of health outcome for two reasons: first because this
determines the “weight” placed on the differences in the benefits and costs of assigning a trial entrant to each alternative; and
second the value of g partly determines the variance of the expected costs and therefore the marginal benefits of assignment
to t; and ty. In this example when the value of 1/g is increased the difference between 0,2 and o, falls (because the
variance of the expected cost is a larger component of 6%, consequently the effect on the marginal benefits and on the
weight attached to differences in marginal costs both work in the same direction, and a greater proportion of the sample is
assigned to t,.

Figure 1b

Once the payoff for each sample size (given that it will be allocated optimally) is established at stage 2 the optimal sample
size at stage 1 (ngy*) will be where the payoff (IT(,ln(,)) reaches a maximum:

H(l)ln(l) = l—I(z)ln(z),n”' = ENBSQ)IHQ), Ny, Ny =Ny (2D

The optimal sample size selected at stage 1 will be allocated according to the contingent allocation decisions that have
already been made at stage 2 and illustrated in figure 1b. If the maximum payoff (IT;;)In;)*) is positive and greater than the
fixed costs of the research (Cy) then it will be efficient to acquire sample information to inform this clinical decision problem
at this technically efficient scale of research.

Figure 1c

Optimal sample size and ENBS for this example are illustrated in figure 1c. The ENBS reaches an maximum of £725,000 at
a sample size of 116 when optimal allocation is used (n;;*=29). However if an equal allocation rule was used the ENBS
would be lower reaching a maximum of £627,000 at a sample size of 76 (n;;=38). Clearly the optimal allocation of trial
entrants increases the value of proposed research. If arbitrary allocation rules are used then sample size (and sample
allocation) will be inefficient, the value of proposed research will be underestimated and there will be a danger that cost-
effective research will be rejected. N

This analysis has provided answers to each of the questions posed at the start of the paper. It should be recognised that in
this simple choice between only two strategies we can say that t, is a relevant alternative if it is efficient to allocate trial
entrants to that arm of the trial (n,*>0) and if IT(j)Ingy*>Cy. If either of these conditions do not hold then the proposed
research is not efficient and t, can be regarded as an irrelevant alternative. In these circumstances no additional research is
necessary and the choice between treatment strategies can be safely based on existing information (prior incremental net
benefit).

4 Generalizing to sequential clinical decision problems

The above analysis has assumed that only two strategies of patient management are possible. However in almost all clinical
decision problems there are potentially very large numbers of strategies. In practice many feasible alternatives are ruled out a
priori as “irrelevant” and the alternatives regarded as “relevant” are selected from those currently used or identified as of
interest in some implicit and arbitrary way. These alternatives represent a very small and arbitrarily selected sub set of
strategies. The optimal strategy may have long since been ruled out as irrelevant or simply never seriously considered.
Without a rational and consistent way to identify relevant alternatives which should be included in any evaluation there is a
danger that the research agenda will simply revolve around arbitrarily selected alternatives.

The evaluation of a clinical decision problem should, at least initially, consider all feasible alternatives rather than focus only
on those currently used or those identified as of interest. The analysis of the simple choice between two alternatives in
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section 3 can be generalised to a S stage sequential clinical decision problem where a clinician faces a choice between two
alternatives at each stage. This provides S+1 possible strategies and those that are relevant can be defined as those where it
will be efficient to allocate some of the sample in a proposed trial. Where it is not efficient to allocate patients to an arm of a
trial then that alternative can be safely ruled out as irrelevant. The analysis of a two stage and four stage decision problem in
section 4.1 and 4.2 demonstrates that it is only by explicitly considering the marginal costs and benefits of sample
information that a consistent and rational definition of what constitute relevant and irrelevant alternatives is available.

4.1 A two stage decision problem

A two stage clinical decision problem is illustrated in figure 2a. This decision problem is identical to the simple single‘stage
choice between two treatments in figure 1a except that a diagnostic test has been made available (see table 1, appendix A).
This provides a choice between three possible strategies of patient management: ty; t;; or test (t) and treat with t; following
a positive results (t,") and t, following a negative result (t,’).

Figure 2a

This two stage decision problem can be solved as a three stage dynamic programme when ‘optimal sample allocation is
required. At stage 3 an optimal allocation of trial entrants between t; and t; contingent on each sample entering stage 3 is
made based on the expected net benefit of every feasible allocation of each sample. At stage 2 an optimal allocation between
the test and no test arm of the proposed trial is made contingent on each sample entering stage 2. This allocation is based on
the expected net benefit of sampling at stage 2 and the payoff at stage 3 from the sample assigned to the no test arm. Finally
the optimal sample size which will maximise expected net benefits can be selected at stage 1. Solving contingent allocation
decisions before the optimal sample size is selected at stage 1 is consistent with the principle of backward induction and can
be characterised as a simple three-stage dynamic programme, where the payoff for each sample size considered at stage 1 is
the expected net benefit given that an optimal patient allocation policy will be followed from stage 1 to the end.

Optimal allocation at stage 3

The choice between t, and t, at stage 3 is identical to the single stage choice considered in section 2. Both the payoffs and
the optimal allocation of a sample entering stage 3 (n3)) is identical to the single stage decision problem considered in
section 3 (see figure 1b). The payoff of a sample of n(3 allocated optimally, with and n) - n,* allocated to ty, and ny *
allocated to t,, will be:

*
H(3)ln(3),n” = ENBS(])IHG),D”*. 3a

Optimal allocation at stage 2

A sample entering stage 2 (n)) which is allocated between test (n,.) and no test alternatives (ng)-n,) will generate benefits
and costs of sampling at stage 2 (ENBS3)ing),n,. ), but the sample allocated to the no test arm of the trial it will enter stage 3
(n@y=ne)-ne) and will be allocated optimally, generating payoffs of H(g)lnm,n“* in 3a. This is a recursive relationship (see
Bellman (1957); Bellman and Dreyfus (1962) ) where the payoff at stage 2 is partly determined by the payoffs associated
with the optimal allocation policy which will be followed at a later stage.

*
H(z)ln(z),n,e = ENBS(z)ln(z),nle + H(3)|n(3),n11 s N3y = N2)-Nye 3b
The payoffs at stage 2 require estimates of the ENBSy)In(),n,. for every feasible allocation of ng, to the test and no test arms

of the trial. The expected benefits of a sample of n(;, with n, allocated to the testing and n(;-n,. allocated to the no test arm
can be expressed as the expected value of sample information:

l 7
EVSI(')_)'I'L(')_),H‘e = . V l N> Nie ‘Op2) .L(D(Q)ln(g), n,e) 3c

g
where:  Dylng), ny = (Bp2)-Op) \/—\T(Z) sNe
8oy = (E(Ulty)-g E(Clty)) - (B(Ulnt,)-g.E(Clnt,))
Vne):Ne = Gy /(Go)” + On2)D)
Oy’ = (Oie'/Mie) + (One” /Ny i)

Although 3c appears to be similar to the expression for EVSI in 2a, the prior incremental net benefit (8q)), the prior

variance of 8y (0'(,(2)2), and the variance of the net benefits of not testing (o,mez) will depend on the sample allocated to the
no test arm which will be allocated between t| and t; at stage 3.

The prior net benefits of not testing (E(Ulnt,)-g.E(Clnt.)) and therefore 8o is dependent on the sample allocated to the no
test alternative because there is a probability (p(8yg) >8x3*)) that this sample of ney-ny = ng, will generate a posterior mean

6



net benefit at stage 3 (3,¢3,) which will lead to t; being selected with net benefits of E(Ult,)-g.E(Clt;). There is also a

probability (1-p(8y3)>0x3)*)) that the same sample will generate a posterior mean net benefit which will lead to t, being
selected with net benefits of E(Ulty)-g.E(Clty).

E(Uint,)-g.E(Cint,) = P(Bx(3) >0x3*)-(E(Ulty)-g E(Clt,)) 3d
+1-p(8y(3) >0 *).(E(Ulty)-g. E(Clty))
where
81(3)_ = (To)-O0@3) +Hxn)-Ox39) Loy +Hxea)
B3 = ((Togzy + L3 = Ing)-B0(3y)/Lxa) = critical value of sample mean 4
Iy =1/ 0'0(3)2,
IX(S) = 1/Gn(3)

Since the choice of sample size must be made before any sample information is available we assume that the sample mean is
normally distributed, centred on the prior mean, with sample variance of cn(z,z 5.

P8y >82)) = P(Z>((B2) >Ox2) V/Ou2y)) 3e

The prior variance of (E(Ulnt,)-g.E(Cnt,)) and therefore 0‘0(2)2 are also dependent on the sample allocated to the no test arm.
This is for two reasons: first, it determines the value of p(83)>9x3*) and second, this sample will reduce the uncertainty
surrounding the net benefit of t; and t, at stage 3. Therefore the prior variance of (E(Uint.)-g.E(Clnt.)) at stage 2 is a
combination of the posterior variance ¢ of E(Ult)-g.E(Clt,) and E(Ulty)-g.E(Cltp) and is calculated for each sample assigned
to the no test arm assuming that an optimal allocation policy will be followed at stage 3. The population variance of the net
benefit of not testing (G,-) is also partly determined by the sample entering and allocated at stage 3, because this
determines the value of p(8y(3) >8x3)™).

The EVSIIne),hy. can now be established taking into account the relationship between the sample considered at stage 2
and sample information it will generate at stage 3. It measures the additional value of sample information given that a
sample of n(,, will generate a sample of n(;-ny at stage 3, which will reduce the uncertainty surrounding the no test
alternative and will also change the expected prior net benefits of choosing not to test. So unlike the single-stage decision
problem, the prior mean and prior variance for the initial decision is not independent of the sample size considered.

The cost of sampling at stage 2 (Cs)ln),n,) includes the additional treatment cost, compared to current practice, and any
marginal reporting costs. The marginal cost of assigning an entrant to the no test arm of the trial will be zero because the
additional treatment and reporting cost have already been taken into account in the estimates of the ENBS at stage 3. The
marginal cost of assigning an entrant to the testing arm of the trial will include the additional cost of the testing strategy and
marginal reporting costs.

Csyngy,nye = ((E(Clt.)-E(Clt))+Cp).n, 3f

The ENBS3)lng).n, is the difference between the expected benefit and the expected cost of a sample of n(, with n. allocated
to the test arm of the trial and n()-n,; allocated to the no test arm.

ENBS(z)m(z),ﬂre = EVSI(z)‘ﬂ(z), Nie -CS(S)ln(z), N 3g

The payoff (see 3b) for every feasible allocation to the test and no test arms of each sample considered at stage 2 can be
established assuming that an optimal allocation policy will be followed at stage 3 (see 3a). The optimal allocation will be
where the marginal payoff of assigning a trial entrant to test arm is equal to the marginal payoff of assigning the entrant to
the no test arm, or where the I1ln),n, reaches a maximum for each ny,). The optimal sample allocation contingent on ny,
for this numerical example is illustrated in figure 2b for three values of 1/g 1.

Figure 2b

Optimal allocation depends on both the sample size entering stage 2 and the monetary valuation of health outcome. In this
example the variance of the test arm is greater than the no test arm so the marginal benefits of allocating an entrant to t, will
be greater than nt,. However the marginal costs of assigning an entrant to t. is greater than nt,. When the value of
1/g=£4,000 n,,=0 and it is not efficient to allocate any sample to the testing arm of the proposed trial. In these circumstances
the testing strategy can be safely ruled out as an irrelevant alternative. The proposed trial should simply compare t; and t,
with the optimal allocation and payoffs given in section 3. However if the value of 1/g is increased to £10,000 then less
weight is placed on the additional costs of assigning entrants to the testing arm of the trial and more weight is placed on the
additional benefits. In these circumstances it is efficient to assign entrants to t. and the test strategy should be regarded as a
relevant alternative.



Optimal sample size and ENBS at stage 1
The first stage is simply to select the optimal sample size given that it will be allocated optimally between the test and no test

arms, and between t, and t, at stage 3. The payoff from a sample of ngy at stage 1 (IT¢yIngy)) is simply the payoff given that
an optimal sample allocation policy is followed at each subsequent stage.

l_I(l)In(l) = ]_I(z)ln(z),n‘e* f ENBS(z)ln(z),n[e' + ENBSG)ln(g),n”' 3h

Nry = D2y B3y = D2y Nee

The optimal sample size at stage 1 (ng;,") will be where IT, 1ying;y reaches a maximum. The optimal sample sizes and ENBS
using optimal and fixed sample allocation rules are illustrated in figure 2¢

Figure 2¢

The payoff reaches a maximum of £724,970 at a sample size of 116 when optimal allocation is used ( n,;=0, n;;=29). In this
example all the sample is allocated to the no test arm, the testing strategy is ruled out as irrelevant, so the problem is
simplified to the single stage decision problem considered in section 3. If an equal allocation rule is used the maximum
payoff would be £362,366 at a sample size of 80. The equal allocation rule forces half the sample to be allocated to testing
where sampling costs exceed expected benefits. This demonstrates that optimal allocation increases the value of proposed
research and allows irrelevant alternatives to be ruled-out explicitly and consistently because it is possible to allocate none of
the sample to a particular arm of the trial (in this case testing). If arbitrary allocation rules are used then: irrelevant
alternative may be included in a proposed trial design; sample size and allocation between alternatives will be inefficient; the
value of proposed research will be underestimated; and there will be a danger that efficient research proposals will be
rejected.

4.2 A four stage decision problem

The dynamic programming approach to optimal patient allocation can also be applied to more complex sequential clinical
decision problems. In this section the approach is applied to a four stage decision problem which is illustrated in figure 3a.
This decision problem is identical to the two stage test/treatment decision presented in section 4.1 except that another
treatment (t;) which is less costly but less effective than t, is available (see appendix A). The clinician now faces a choice
between 5 strategies of patient management: t,; treat (t,) with either t, or t,; test and treat with t;; or test and treat with t,.

Figure 3a

This four stage decision problem can be characterised as a five stage dynamic programme where optimal contingent sample
allocations between t, and t; are made at stage 5 and stage 4 based on the expected net benefits of sampling for every
feasible allocation of each sample entering the stage. At stage 3 contingent allocation decisions must be made between
treatment (with either t, or t) and no treatment. The optimal allocation is based on the expected net benefits of sampling at
stage 3 and the payoff from stage 4 given the optimal allocation of the sample allocated to the treatment arm of the trial. At
stage 2 an optimal allocation between the test and no test arms of the trial is made for each sample entering stage 2. This
contingent allocation is based on the expected net benefits of sampling at stage 2, the payoff from the optimal allocation of
the sample which will enter stage 3, and the payoff from the optimal allocation of the sample which will enter stage 5.
Finally the optimal sample size can be selected at stage 1 given that an optimal allocation policy will be followed at each
subsequent stage.

This dynamic programming approach exploits the recursive relationship between payoffs at: stage 3 and 4; stage 2, 3 and 5;
and stage 1 and 2. The ENBS at earlier stages takes into account the relationship between the sample considered and the
information it will generate when it is allocated at a subsequent stage. This ensures that the estimates of the benefits of
sample information at earlier stages measure only the additional value of information given that the sample will be allocated
at later stages: reducing the uncertainty surrounding those contingent decisions and changing the prior net benefit of those
alternatives. So, in the same way as allocation of the sample at stage 2 in section 4.1, the prior mean, prior variance and
population variance of the alternatives at earlier stages are not independent of the sample size considered and the way it is
allocated. The details of measures of payoff, optimal contingent allocations at each stage, and optimal sample size are given
in Appendix B.

Optimal allocation

The ENBS at each stage, given the optimal contingent allocation of the sample entering stage 1, is illustrated in figure 3b.
The ENBS represents the payoff at each stage and the total payoff for a sample selected at stage 1 (ENBSy)) is the vertical
summation of ENBS for each sample considered. Figure 3b illustrates that the sample allocation at an earlier stages is partly
determined by the payoffs generated by the allocated sample entering subsequent stages. For example, the payoff at stage 2
is negative (ENBS;) <0) but it is still worth allocating patients at stage 2 because this will generate positive payoffs at stage
3 and 4 (ENBS3, >0, ENBS 4, >0)which more than offset the negative ENBS3).



Optimal sample size and ENBS

Optimal sample size and ENBS using optimal allocation can be compared to the results of a fixed and equal allocation rule
in figure 3c. ENBS reaches an maximum of £3,866,000 at a sample size of 165 when optimal allocation is used (n*=67,
n,*=27, ny*=12 at stage 4, and n,;*=19 at stage 5). However ENBS and optimal sample size is lower when an equal
allocation rule is used (£3,530,000, ng;)*=148).

Figure 3b

In this example at n,y* it is efficient to assign some of the trail entrants to all the potential arms of the proposed trial
including testing (all are relevant alternatives see figure 3b). In section 4.1 testing was not a relevant alternative but once the
alternative treatment t, becomes available it does become relevant because treatment with t, following a positive test result
makes the testing strategy more cost-effective. This demonstrates that ruling out alternatives a priori will be inefficient and
will seriously bias the design of the proposed research. In this case if t, is ruled out (possibly because it is less effective than
t;) then the testing strategy would also not be included in the design. The ENBS would be seriously underestimated at
£725,000 rather than £3,865,000 and there would be a danger that cost-effective research will be rejected.

Figure 3¢

The dynamic programming approach

This four-stage decision problem is solved using a simple five-stage dynamic programme where contingent allocation
decisions at each stage are solved before the optimal sample at stage 1 can be selected. The payoff for each sample
considered at stage 1 is established conditional on an optimal allocation policy at each subsequent stage. This approach
reduces the computation required to solve this problem even more dramatically than in the two-stage decision problem
considered in section 4.1 The solution to this five stage problem, considering a maximum sample size of N, requires
(N+1)24+(N+1))/2 estimates of I1s)lns),n,; at stage 5, 4, 3, and 2.

This reduces the number of estimates of the ENBS from AS = 125,751% if full enumeration is required to A*S = 125,751*4
when a maximum sample of 500 is considered at each stage (A are the feasible allocations of each sample at each stage and
S are the number of stages in the decision problem). The solution for this numerical example requires 503,004 estimates of
the ENBS, which takes approximately 14 hours of computing time (10 estimates per second). This compares very
favourably to the full enumeration of all possible alternatives which would require over 7.9 billion years of computing time,
a task so enormous it can currently be regarded as impractical.

Although a dynamic programing approach was adopted in the two and four stage decision problems, this was simply because
the dimensionality of the problem made the full enumeration, of all feasible allocations at every stage for every sample size,
impossible. In many ways a the full enumeration of the problem would be more transparent (although less efficient) but this
was only practicable for the single stage decision problem in section 3. However if developments in computing speed do
make the scale of full enumeration possible the solution will still require the general framework of Bayesian decision theory
to provide estimates of the marginal benefits and costs of sampling so that optimal sample size, optimal allocation of trail
entrants, and the expected value of proposed research can be established.

5 Discussion

The maximum payoffs (ENBS at optimal sample size) for a range of possible monetary valuations of health outcome are
illustrated in figure 4 for the single, two and four stage decision problems. These results demonstrate that the value of
proposed research (ENBS) is determined by the monetary valuation of health outcome. In figure 4 there is clearly a strong
relationship between ENBS and 1/g although this is not necessarily positive because 1/g determines both the prior mean
(probability of error) and the value placed on consequences of error (slope of the loss function). For example, the ENBS for
the single stage decision problem falls with 1/g (when 1/g>£6,500 and 8,>0) because reduction in the probability of error
offsets the increase in the value of errors if they occur.

Figure 4

What is clear from these example is that the value of proposed research cannot be established without making some
assessment of societies monetary valuation of health outcome. This valuation cannot be avoided and can either be made
explicitly, as in this case, or implicitly whenever decisions about research and development are actually made. These results
also demonstrate that research design including: optimal sample size, the allocation of the sample and which alternatives
should be regarded as relevant are also determined by the monetary valuation of health outcome. The optimal allocation of
patients in a clinical trail is a fundamental design issue that must be addressed even in the fixed sample designs discussed
above. This can only be done by considering the marginal benefits and marginal costs of alternative allocations. Therefore
research cannot be efficiently designed independently of economic decision rules and the budget constraint on service
provision.



A comparison of ENBS for the three decision problems demonstrates that ruling out possible strategies of patient
management a priori (by excluding t, and simplifying the four stage to a two stage problem or ruling out testing and
simplifying the two to a single stage problem) can seriously underestimate the value of proposed research. There will be a
danger that cost-effective research will be rejected and research will focus on an arbitrary selected subset of strategies. This
approach to the value of information does provide a way to safely rule out alternatives as irrelevant when it is not efficient to
allocate any sample to that arm of the trial. This occurs in the two stage decision problem where it will not be efficient to
allocate patients to the testing arm (when 1/g<£4,000) and it can be ruled out as irrelevant. In other circumstances none of
the alternatives are relevant and it is not efficient to'conduct any prospective research. In these circumstances it will be
efficient to base decisions on existing (prior) information. In these examples prospective research will not be efficient when
1/g<£3,000 if t, is excluded and when 1/g<£2,000 if t; is included.

It is also worth noting that the notion that dominated programmes (whether strongly or extendedly dominated) can be
excluded from an analysis and from subsequent evaluations is fundamentally flawed. It is possible that a dominated
alternative in a deterministic cost-effectiveness analysis will be relevant in subsequent evaluation while non dominated but
not optimal alterative may not. It is only by explicitly considering the marginal costs and benefits of sample information that
a consistent and rational definition of what constitute relevant and irrelevant alternatives is available. In these circumstances
the concept of dominance is not only unnecessary (when using net benefit) it is also positively dangerous

6 Conclusions

Bayesian decision theory does provide a general methodological framework which can ensure consistency in decision
making between health care provision, research and development priorities and the design, conduct and interpretation
clinical research. The examples presented above demonstrate that ananalysis of the value of sample information can be
applied to more complex sequential clinical decision problems and provide answers to the questions posed in the
introduction: i) which clinical decision problems will be worth evaluating through prospective clinical research; ii) if a
clinical decision problem is worth evaluating which of the many competing alternatives should be considered “relevant” and
be compared in the evaluation; iii) what is the optimal scale of this prospective research; iv) what is an optimal allocation of
trial entrants between the competing alternatives; and v) what is the value of this proposed research to society?

These are questions of technical efficiency in research design, and allocative efficiency in research and development
activities. Technically efficient research design requires the analyst to: explicitly consider the marginal costs and benefits of
acquiring sample information; abandon the traditional and arbitrary power calculation and allocation rules; and establish the
technically efficient scale of research by selecting the design that maximises the societal payoff to proposed research.
Importantly it provides, possibly for the first time, a consistent, and rational definition of what constitute relevant
alternatives in the economic and clinical evaluation of health care technologies. Allocative efficiency in research and
development is possible once the societal payoff to proposed research has been established. The valuation of proposed
research can be used to allocate resources between proposed research in the same clinical area; across broad clinical areas;
and between research and development activities in general and the provision of health services. In short it can be used to
efficiently allocate resources between technically efficient research proposals, and between a technically and allocatively
efficient research and development programme and the provision of health care in a way which is consistent with the explicit
objectives of the health care system.
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Notes

If patients can have the disease and can be treated more than once then population of interest is not the population
of patients at risk in t but expected episodes of illness in t.

Clearly it is possible that a new treatment has a lower cost then current practice if this difference exceeds marginal
reporting costs then Cs<0 for the experimental arm of the trial. However this will not lead to infinite sample sizes
because there is another substantial opportunity cost of sampling ie patients are “used up” in the trial, see (2b)
Also we assume that the follow-up period of the trial corresponds to the time horizon of cost and health effects.
With minor changes it is possible use this framework to consider different lengths of follow up, selecting the
design with the highest societal payoff.

The marginal benefit of allocating a sample to the experimental arm will be determined by its contribution to the
reduction in sample variance of incremental net benefit. Clearly the reduction in sample variance will be
determined by the population variance of the net benefits for that arm and the size of the sample already allocated
(see Vin(2),nt1 in 2a). So any differences in the marginal benefit of allocating to control or experimental are
determined by differences in population variance not prior variance. Differences in the prior variance of the net
benefits between control and experimental are only important insofar as they contribute to the prior variance of the
incremental net benefit.

The critical value of the sample mean (Sx(g)') is the sample mean which generates a posterior mean that changes the
prior decision. If the sample mean is greater than this critical value (83;>8,y*) the posterior mean will be greater
than 8, and the clinician should select t, at stage 3, but when 8y3)<8,(3,* the posterior mear is less than 3y, and the
clinical should select ty.

For the purposes of demonstrating this type of approach we have taken a parametric approach and assumed
normatlity. This provides conjugate priors and eases exposition. However this assumption can be relaxed and non
parametric numerical methods are available (Markov chain Monte Carlo) with sofware for their implementation
(eg., Win BUGS)

Posterior variance is a combination of prior and sample variance and will be less than either the prior variance or
the sample variance. In general the posterior variance (0,(5)2) with a sample of n; is a combination of prior (00(5)2)
and sample variance (on(s)z):

G169 =(Coe’/(Cugs’ + (Oae)))-(Oncs))

In the single stage decision problem there are no discontinuities in optimal sample allocation in figure 1b except
for the steps which simply reflect the fact that trial entrants are discrete. However this allocation results in a
smooth relationship between sample size and ENBS in figure 1c as expected. The marked discontinuities in the
optimal allocation at stage 2 which are illustrated in figure 2b occur for three reasons: I) the discrete nature of trial
entrants is more important at earlier stages (ie to allocate one more patient at a later stage may require a number of
entrants at an earlier stage); ii) optimal allocation at earlier stages is not only determined by the value of sampling
at that stage (which would generate a smooth allocation) but also by the payoff gained a subsequent stages; iii) as
sample size changes some strategies become relevant. For example, at very small sample sizes it is not efficient to
allocate sample to t, in figure 1b and 2¢. This also occurs in the four stage problem where it is not efficient to
allocate sample to the testing strategy when n;,<48 in figure 3b. These three issues interact with the discrete nature
of trial entrants to produce the jaggedness in optimal allocation. Finally the discontinuities in allocation do
generate a smooth relationship between ENBS at stage 1 and sample size in figure 2c¢ and figure 3b.
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Appendix A

Table 1 Numerical Examples

Prior Mean | Prior Population Quasi prior sample
SD SD size (ng)
Uy 6 0.5164 1.2649 12
Uy, 8 0.5164 1.2649 12
Uy 2 0.2582 0.8942 6
U 10 0.2582 0.8942 6
U, 4 0.5164 1.2649 12
Up 4 0.5164 1.2649 12
Ci £12,000
Cos £8,000
Cio 0
Coo 0
Cp | £2,400
Coz £2,400
Cee £8,000
p(D) 0.6 0.1 0.4899 24
p(t.'D) 0.9 0.0866 0.3 12
p(t; IND) 0.8 0.1155 0.4 12

p(t."ID) = probability of a true positive result (sensitivity)
p(te IND) = probability of a true negative result (specificity)

Appendix B

Optimal allocation at stage 5

The payoff from a sample entering stage 5 (n(s))with n; allocated to t, and n¢s)-n,; allocated to t, is the expected net benefit of
sampling or the difference between the benefit of sample information (EVSIs)In(s), n;;) and the cost of sampling(Css)lns),

ny)

H(5)|n(5),n,l = ENBS(S)‘D(S),DH =EV SI(5)|D(5), Ny -CS(5)|D(S), gy
where: Cs(5)ln(5),n“ = (E(Cltl)-E(Clt()))ﬂll + (E(Cltz)-E(CltO)).(n(5)-nt1)
o5y = (B(UIt,", t;)-g.E(Clt,", t1)) - (E(Ult", t)-g.E(Clt.*, t,))
The optimal allocation of the sample entering stage 5 (ny*) will be where Isings),n, reaches a maximum for each ns,
considered.

Optimal allocation at stage 4 (l'[(4)ln(4),nu')

The payoff from a sample entering stage 4 (ny))with n, allocated to t; and nyy-n; allocated to t, is the expected net benefit of
sampling or the difference between the benefit of sample information (EV SlyIn), n1) and the cost of sampling(Cslngy),
n,)

H(4)|l’l(4),l’lll = ENBS(4)|1’1(4),1’1;1 = EVSI(4)'H(4), gy -CS(4)|D(4), Ny

where: CS(4)|n(4),n[1 = (E(Cltl)'E(Clt()))n“ +(E(C|t2)-E(C|t0)).(n(4)-nu)
doay= (E(Ult,)-g.E(Clty)) - (E(Ult)-g.E(Clty))

13



Optimal allocation at stage 3

A sample entering stage 3 (n)) which is allocated between the treatment and no treatment arms will generate an expected
net benefit of sampling at stage’3, but the sample allocated to the treatment arm will enter stage 4 and will be allocated
optimally between t; and t, generating a payoff of H(4)In(4),n,l'. So there is a recursive relationship between the payoff at

stage 3 and stage 4, where the payoff and the optimal allocation at stage 3 is determined by the ENBS at stage 3 and the
payoff given an optimal allocation policy at stage 4.

[ ayingy,n, = ENBS3)ng),n, + Miglng,ny Nggy = Ny
where: ENBS 3)ngs),n, = EVSIgg)ng),ny - Csgylng),nge
CS(3)|H(3),I1“. =0
8y = (E(Ul)-g.E(Clty)) - (E(Ulty)-g.E(Clty))
(E(Ult,)-g E(Clt;)) = p(8y4>8y4) )-(B(Ult;)-g E(Clty)) +
1-pBya>Busy )(E(Ulty)-g E(Clp))
ey = ((10(4) + L) - 10(4) BoW x4y,
Loy = Voo’ : Lay = 1/0us)’
Oo)’ and Gg)” = f(ngay,ny),

Optimal allocation at stage 2

A sample entering stage 2 (ng)) which is allocated to the test (n,,) and no test alternatives (n()-n,.) will generate an expected
benefit and cost of sampling at stage 2. Also ngy-n,=ng, will be allocated optimally at stage 3 generatmg a payoff of
H(3)In(3),n,, , and p(t.").ne=n(s, will be allocated optimally at stage 5 generating a payoff of H(s)ln(s),nu This is a recursive
relationship where the payoff and the optimal contingent allocation at stage 2 is determined by the expected net benefits of
sampling at stage 2 but also by the payoffs given an optimal allocation policy at subsequent stages.

T oingyne = ENBS g)ny,ne + Migingyny, + Tging),ng’, ngy = ngyng, gy = plte™).ng
where:  ENBSyIn;),n,e = EVSIpIne),n - Cse)lng,nge

Cs(z)ln(z),nte = Cm.nm

Sy = (E(Ult,)-g.E(Clt,) - (E(Ulnte)-g.E(glnte))

E(Ulnt,)-g.E(Clnt,) = p(8x3>0x(3) )-(E(UIt)-g.E(CIt)) +

1-p(8xy >8x(2)‘)-(E(Ulto)‘g-E(Clto))
E(Ult,)-g.E(Clt;) = p(t.).(E(Ult,’, ty)-g. E(Clt., to)) +

P(te+)~(P(5x(sl >8,"(s)-(B(UIte", t))-g.E(Clte*, 1))
. , + 1-p(8ys) 385 (5))-(E(Ulte", t)-g.E(Ult,", t2)))
8xay» Bxay » Gugay and Gy’ = f(ngyy, s sy, yy)

Optimal sample size at stage 1

The first stage is simply to select the optimal sample size given that an optimal allocation policy will be followed at each
subsequent stage. The payoff given a sample of ) selected at stage | (H(l)ln(*l)) is simply the payoff from stage 2 given an

optimal allocation of ny between the test arm (ne ) and the no test arm D2y Nye -
H(])In(l) = ENBS(])'H(U = H(z)lngz),n[e
ENBS(])ln“) = ENBS(Q)'H(Z),H(C +ENHS(3)|H(3),HH + ENBS(4)|H(4),I1“ + ENBS(5)|H(5),HII

N2y = Ny, Ny = Ny Mg 5 Negy = Ny, Tgsy = plte’).nge

The optimal sample size at stage 1 (n(l)‘) can be selected and is where IT(;)ln, or the ENBS yln;y reaches a maximum.,
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Figure 1a
A Single-Stage Decision Problem (a two stage dynamic programme)

10 is current practice (no treatment) and t1 is a new treatment Utilities
Uj
Discase p(D) Ui
Treatment (t1) ®
No Disease 1-p(D) Uoi

Stage 1 . Stage 2

Disease p(D) Uto
No Treatment (to) ®
No Disease 1-p(D) Uoo

Where:
to is current practice (no treatment) and t1 is a new treatment
p(D) is the prior probability of disease
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Figure 2a

A Two Stage Decision Problem (a three stage dynamic programme)
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Where: .
p(te+) is the probability of a test positive result
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p(Dte+) is the probability of disease conditional on a positive test (predictive value positive)

Utilities
Ui

Uo1

Uoo

Un

Uoo

Costs
Cy

Coo

Cio



Sample Allocated to te (n,)

Figure 2b
Two Stage Problem - Optimal Allocation of Sample at Stage 2 to te (n¢)
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Figure 2¢
Two Stage Problem - Difference in ENBS (1/g=£4,000)
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Figure 3a

A Four Stage Decision Problem
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Figure 3b
Four Stage Problem - ENBS with Optimal Allocation (1/2=£4,000)
(ENBS(1) = ENBS2)+ENBS(3)+ENBS4)+ENBS())
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Figure 3¢
Four Stage Problem - Difference in ENBS (1/g=£4,000)
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ENBS for the Single Two and Four Stage Problem
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